Termination w.r.t. Q of the following Term Rewriting System could not be shown:
Q restricted rewrite system:
The TRS R consists of the following rules:
eq2(n__0, n__0) -> true
eq2(n__s1(X), n__s1(Y)) -> eq2(activate1(X), activate1(Y))
eq2(X, Y) -> false
inf1(X) -> cons2(X, n__inf1(s1(X)))
take2(0, X) -> nil
take2(s1(X), cons2(Y, L)) -> cons2(activate1(Y), n__take2(activate1(X), activate1(L)))
length1(nil) -> 0
length1(cons2(X, L)) -> s1(n__length1(activate1(L)))
0 -> n__0
s1(X) -> n__s1(X)
inf1(X) -> n__inf1(X)
take2(X1, X2) -> n__take2(X1, X2)
length1(X) -> n__length1(X)
activate1(n__0) -> 0
activate1(n__s1(X)) -> s1(X)
activate1(n__inf1(X)) -> inf1(X)
activate1(n__take2(X1, X2)) -> take2(X1, X2)
activate1(n__length1(X)) -> length1(X)
activate1(X) -> X
Q is empty.
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
eq2(n__0, n__0) -> true
eq2(n__s1(X), n__s1(Y)) -> eq2(activate1(X), activate1(Y))
eq2(X, Y) -> false
inf1(X) -> cons2(X, n__inf1(s1(X)))
take2(0, X) -> nil
take2(s1(X), cons2(Y, L)) -> cons2(activate1(Y), n__take2(activate1(X), activate1(L)))
length1(nil) -> 0
length1(cons2(X, L)) -> s1(n__length1(activate1(L)))
0 -> n__0
s1(X) -> n__s1(X)
inf1(X) -> n__inf1(X)
take2(X1, X2) -> n__take2(X1, X2)
length1(X) -> n__length1(X)
activate1(n__0) -> 0
activate1(n__s1(X)) -> s1(X)
activate1(n__inf1(X)) -> inf1(X)
activate1(n__take2(X1, X2)) -> take2(X1, X2)
activate1(n__length1(X)) -> length1(X)
activate1(X) -> X
Q is empty.
Q DP problem:
The TRS P consists of the following rules:
ACTIVATE1(n__take2(X1, X2)) -> TAKE2(X1, X2)
TAKE2(s1(X), cons2(Y, L)) -> ACTIVATE1(L)
LENGTH1(cons2(X, L)) -> S1(n__length1(activate1(L)))
ACTIVATE1(n__0) -> 01
ACTIVATE1(n__s1(X)) -> S1(X)
TAKE2(s1(X), cons2(Y, L)) -> ACTIVATE1(X)
EQ2(n__s1(X), n__s1(Y)) -> ACTIVATE1(X)
EQ2(n__s1(X), n__s1(Y)) -> EQ2(activate1(X), activate1(Y))
LENGTH1(cons2(X, L)) -> ACTIVATE1(L)
INF1(X) -> S1(X)
ACTIVATE1(n__length1(X)) -> LENGTH1(X)
TAKE2(s1(X), cons2(Y, L)) -> ACTIVATE1(Y)
ACTIVATE1(n__inf1(X)) -> INF1(X)
EQ2(n__s1(X), n__s1(Y)) -> ACTIVATE1(Y)
LENGTH1(nil) -> 01
The TRS R consists of the following rules:
eq2(n__0, n__0) -> true
eq2(n__s1(X), n__s1(Y)) -> eq2(activate1(X), activate1(Y))
eq2(X, Y) -> false
inf1(X) -> cons2(X, n__inf1(s1(X)))
take2(0, X) -> nil
take2(s1(X), cons2(Y, L)) -> cons2(activate1(Y), n__take2(activate1(X), activate1(L)))
length1(nil) -> 0
length1(cons2(X, L)) -> s1(n__length1(activate1(L)))
0 -> n__0
s1(X) -> n__s1(X)
inf1(X) -> n__inf1(X)
take2(X1, X2) -> n__take2(X1, X2)
length1(X) -> n__length1(X)
activate1(n__0) -> 0
activate1(n__s1(X)) -> s1(X)
activate1(n__inf1(X)) -> inf1(X)
activate1(n__take2(X1, X2)) -> take2(X1, X2)
activate1(n__length1(X)) -> length1(X)
activate1(X) -> X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
ACTIVATE1(n__take2(X1, X2)) -> TAKE2(X1, X2)
TAKE2(s1(X), cons2(Y, L)) -> ACTIVATE1(L)
LENGTH1(cons2(X, L)) -> S1(n__length1(activate1(L)))
ACTIVATE1(n__0) -> 01
ACTIVATE1(n__s1(X)) -> S1(X)
TAKE2(s1(X), cons2(Y, L)) -> ACTIVATE1(X)
EQ2(n__s1(X), n__s1(Y)) -> ACTIVATE1(X)
EQ2(n__s1(X), n__s1(Y)) -> EQ2(activate1(X), activate1(Y))
LENGTH1(cons2(X, L)) -> ACTIVATE1(L)
INF1(X) -> S1(X)
ACTIVATE1(n__length1(X)) -> LENGTH1(X)
TAKE2(s1(X), cons2(Y, L)) -> ACTIVATE1(Y)
ACTIVATE1(n__inf1(X)) -> INF1(X)
EQ2(n__s1(X), n__s1(Y)) -> ACTIVATE1(Y)
LENGTH1(nil) -> 01
The TRS R consists of the following rules:
eq2(n__0, n__0) -> true
eq2(n__s1(X), n__s1(Y)) -> eq2(activate1(X), activate1(Y))
eq2(X, Y) -> false
inf1(X) -> cons2(X, n__inf1(s1(X)))
take2(0, X) -> nil
take2(s1(X), cons2(Y, L)) -> cons2(activate1(Y), n__take2(activate1(X), activate1(L)))
length1(nil) -> 0
length1(cons2(X, L)) -> s1(n__length1(activate1(L)))
0 -> n__0
s1(X) -> n__s1(X)
inf1(X) -> n__inf1(X)
take2(X1, X2) -> n__take2(X1, X2)
length1(X) -> n__length1(X)
activate1(n__0) -> 0
activate1(n__s1(X)) -> s1(X)
activate1(n__inf1(X)) -> inf1(X)
activate1(n__take2(X1, X2)) -> take2(X1, X2)
activate1(n__length1(X)) -> length1(X)
activate1(X) -> X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph contains 2 SCCs with 8 less nodes.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ACTIVATE1(n__take2(X1, X2)) -> TAKE2(X1, X2)
ACTIVATE1(n__length1(X)) -> LENGTH1(X)
TAKE2(s1(X), cons2(Y, L)) -> ACTIVATE1(L)
TAKE2(s1(X), cons2(Y, L)) -> ACTIVATE1(Y)
TAKE2(s1(X), cons2(Y, L)) -> ACTIVATE1(X)
LENGTH1(cons2(X, L)) -> ACTIVATE1(L)
The TRS R consists of the following rules:
eq2(n__0, n__0) -> true
eq2(n__s1(X), n__s1(Y)) -> eq2(activate1(X), activate1(Y))
eq2(X, Y) -> false
inf1(X) -> cons2(X, n__inf1(s1(X)))
take2(0, X) -> nil
take2(s1(X), cons2(Y, L)) -> cons2(activate1(Y), n__take2(activate1(X), activate1(L)))
length1(nil) -> 0
length1(cons2(X, L)) -> s1(n__length1(activate1(L)))
0 -> n__0
s1(X) -> n__s1(X)
inf1(X) -> n__inf1(X)
take2(X1, X2) -> n__take2(X1, X2)
length1(X) -> n__length1(X)
activate1(n__0) -> 0
activate1(n__s1(X)) -> s1(X)
activate1(n__inf1(X)) -> inf1(X)
activate1(n__take2(X1, X2)) -> take2(X1, X2)
activate1(n__length1(X)) -> length1(X)
activate1(X) -> X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
ACTIVATE1(n__take2(X1, X2)) -> TAKE2(X1, X2)
TAKE2(s1(X), cons2(Y, L)) -> ACTIVATE1(L)
TAKE2(s1(X), cons2(Y, L)) -> ACTIVATE1(Y)
TAKE2(s1(X), cons2(Y, L)) -> ACTIVATE1(X)
LENGTH1(cons2(X, L)) -> ACTIVATE1(L)
Used argument filtering: ACTIVATE1(x1) = x1
n__take2(x1, x2) = n__take2(x1, x2)
TAKE2(x1, x2) = TAKE2(x1, x2)
n__length1(x1) = x1
LENGTH1(x1) = x1
s1(x1) = x1
cons2(x1, x2) = cons2(x1, x2)
Used ordering: Quasi Precedence:
n__take_2 > TAKE_2
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ACTIVATE1(n__length1(X)) -> LENGTH1(X)
The TRS R consists of the following rules:
eq2(n__0, n__0) -> true
eq2(n__s1(X), n__s1(Y)) -> eq2(activate1(X), activate1(Y))
eq2(X, Y) -> false
inf1(X) -> cons2(X, n__inf1(s1(X)))
take2(0, X) -> nil
take2(s1(X), cons2(Y, L)) -> cons2(activate1(Y), n__take2(activate1(X), activate1(L)))
length1(nil) -> 0
length1(cons2(X, L)) -> s1(n__length1(activate1(L)))
0 -> n__0
s1(X) -> n__s1(X)
inf1(X) -> n__inf1(X)
take2(X1, X2) -> n__take2(X1, X2)
length1(X) -> n__length1(X)
activate1(n__0) -> 0
activate1(n__s1(X)) -> s1(X)
activate1(n__inf1(X)) -> inf1(X)
activate1(n__take2(X1, X2)) -> take2(X1, X2)
activate1(n__length1(X)) -> length1(X)
activate1(X) -> X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph contains 0 SCCs with 1 less node.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
EQ2(n__s1(X), n__s1(Y)) -> EQ2(activate1(X), activate1(Y))
The TRS R consists of the following rules:
eq2(n__0, n__0) -> true
eq2(n__s1(X), n__s1(Y)) -> eq2(activate1(X), activate1(Y))
eq2(X, Y) -> false
inf1(X) -> cons2(X, n__inf1(s1(X)))
take2(0, X) -> nil
take2(s1(X), cons2(Y, L)) -> cons2(activate1(Y), n__take2(activate1(X), activate1(L)))
length1(nil) -> 0
length1(cons2(X, L)) -> s1(n__length1(activate1(L)))
0 -> n__0
s1(X) -> n__s1(X)
inf1(X) -> n__inf1(X)
take2(X1, X2) -> n__take2(X1, X2)
length1(X) -> n__length1(X)
activate1(n__0) -> 0
activate1(n__s1(X)) -> s1(X)
activate1(n__inf1(X)) -> inf1(X)
activate1(n__take2(X1, X2)) -> take2(X1, X2)
activate1(n__length1(X)) -> length1(X)
activate1(X) -> X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.